Polymer reports

References

- Sperling, L. H. and Friedman, D. W. J. Polym. Sci., Part A 1969, 7, 425
- 2 Grates, J. A., Thomas, D. A., Hickey, E. C. and Sperling, L. H. J. Appl. Polym. Sci. 1975, 19, 1731
- 3 Akovali, G., Biliyar, K. and Shen, M. J. Appl. Polym. Sci. 1976, 20, 2419
- Kim, S. C., Klempner, D., Frisch, K. C., Radigan, W. and 4 Frisch, H. L. Macromolecules 1976, 9, 258
- 5 Touhsaent, R. E., Thomas, D. A. and Sperling, L. H. J. Polym. Sci. (C) 1974, 46, 175
- Manson, J. A. and Sperling, L. H. 'Polymer Blends and 6 Composites' Plenum Press, New York, 1976
- 7 Klempner, D. and Frisch, K. C. 'Polymer Alloys' Plenum Press, New York, 1977
- Paul, D. R. and Newman, S. 'Polymer Blends' Academic Press, 8 New York, 1978, Vol. 2, p 1
- 9 Kim, S. C., Klempner, D., Frisch, K. C., Frisch, H. L. and Ghiradella, H. Polym. Eng. Sci. 1975, 15, 339
- Donatelli, A. A., Thomas, D. A. and Sperling, L. H. 'Recent 10 Advances in Polymer Blends, Grafts and Blocks' Plenum Press, New York, 1974

- 11 Huelk, V., Thomas, D. A. and Sperling, L. H. Macromolecules 1972, 5, 340
- 12 Hourston, D. J. and Hughes, I. D. J. Appl. Polym. Sci. 1977, 21. 3099
- 13 Williams, M. L. and Ferry, J. D. J. Colloid Sci. 1955, 10, 474
- Thurn, H. and Wolf, K. Kolloid-Z. 1958, 156, 21 14
- Heijboer, J. 'Physics of Non-Crystalline Solids' North Holland, 15 Amsterdam, 1965, p 231
- Read, B. E. Polymer 1964, 5, 1 16
- Mead, D. J. and Fuoss, R. M. J. Am. Chem. Soc. 1942, 64, 17 2389
- 18 Mikhailov, G. P. Zh. Tekh. Fiz. 1951, 21, 1395
- Scheiber, D. J. Dissertation, University of Notre Dame, Indiana, 19 1957
- Brouckere, L. and Offergeld, G. J. Polym. Sci. 1958, 30, 105 20
- 21 Ishida, Y. Kolloid-Z. 1961, 174, 124
- 22
- Williams, G. Trans. Faraday Soc. 1964, 60, 1548, 1556 McCrum, N. G., Read, B. E. and Williams, G. 'Anelastic and 23 Dielectric Effects in Polymeric Solids' Wiley, London, 1967
- 24 Schmieder, K. and Wolf, K. Kolloid-z 1953, 134, 149
- 25 Thurn, H. and Wolf, K. Kolloid-Z. 1956, 148, 66

Modulus and strength of filled and crystalline polymers*

T. S. Chow

Xerox Corporation, J. C. Wilson Center for Technology, Rochester, N. Y. 14644, USA (Received 22 June 1979)

Introduction

When inclusions have a higher elastic modulus than the matrix, the chief effect of the filler is to increase the moduli of the composite. Theories of varying degrees of refinement have been reviewed^{1,2} to account quantitatively for spherical filler particles and uniaxially oriented infinitely long fibres. For aligned chopped fibre composites, Halpin and Tsai² introduced a simple set of approximate equations which were later employed by Halpin and Kardos³ to study the elastic moduli of partially crystalline polymers. Recently, Porter and his colleagues^{4,5} have found that the Halpin-Tsai equation does not provide a correct estimation of the crystal shape in semicrystalline polyethylene.

Based on a recent model developed by the author^{6,7}, the relation of the modulus of semicrystalline polymers and the shape of crystallites will be discussed here. Because stress concentration factors are very critical parameters in the study of fracture and strength of heterogeneous materials, a relation is proposed for their determination which includes the effects of particle shape and volume concentration of fillers.

Modulus

The modulus of a crystalline polymer has been considered by Takayanagi⁸. His series-parallel model gives the effective

0032-3861/79/121576-03\$02.00 © 1979 IPC Business Press 1576 POLYMER, 1979, Vol 20, December tensile modulus

$$E_{\parallel} = \left[\frac{\psi}{\theta E_m + (1-\theta)E_f} + \frac{1-\psi}{E_f}\right]$$
(1)

where the subscripts f and m identify the crystalline and amorphouse phases. The amorphous region is of volume $\psi\theta$ and the crystalline region $(1 - \psi \theta)$. The basic problem with the model is how to decide the values of ψ and θ .

In an alternative approach, Halpin and Kardos³ employ the Halpin-Tsai equation² to determine the modulus of semicrystalline polymers from the crystal shape characterized by the aspect ratio l/d. For a uniaxially oriented morphology the tensile modulus is given by

$$E_{\parallel}/E_m = (1 + \epsilon \eta \phi)/(1 - \eta \phi)$$
⁽²⁾

where $\eta = (E_f/E_m - 1)/(E_f/E_m + \epsilon)$, $\epsilon = 2(l/d)$ and ϕ is the volume fraction of crystals.

From electron diffraction measurements of ultradrawn polyethylene, Crystal and Southern⁹ observed extended chain crystals approximately 200-250 Å in diameter and 5000 Å long. The properties of high-density polyethylene are⁵

This paper was a part of the presentation at the 2nd Joint Meeting of U.S. and Japan Societies of Rheology, Symposium on Suspensions and Filled Systems, Kona, Hawaii, April 1979

$$E_f = 2.4 \times 10^{12} \text{ dyn cm}^{-2}$$

$$E_m = 1 \times 10^9 \text{ dyn cm}^{-2}$$

$$\phi = 0.85$$
(3)

Mead, Porter, Southern and Weeks^{4,5} found the crystal shape, calculated from equation (2), much greater than the measured aspect ratio l/d = 20-25. This conclusion is not entirely surprising because equation (2) was reduced from Hermans' solution² to a simple approximate form containing a geometric parameter ϵ . The parameter is determined for ordinary short-fibre reinforced plastics with the ratio of E_f/E_m rarely exceeding 1000. The ratio of moduli for semicrystalline polyethylene is 2400. Thus, the Halpin-Tsai equation originally proposed for composite materials may not be adequate for semicrystalline polymers.

A recent model by the author⁷ has considered fully the effects of particle shape and concentration of two phase anisotropic heterogeneous materials. There is no fitting parameter in the model. Both the filler and matrix are assumed isotropic. Fillers are treated as identical spheroids

$$(x_1^2 + x_1^2)/a^2 + x_3^2/c^2 = 1$$
⁽⁴⁾

When the corresponding axes are aligned and the spatial distribution of the fillers is random and homogeneous, the medium as a whole becomes transversely isotropic about the x_3 axis. The effective longitudinal Young's modulus $E_{||}$ is given by

$$\frac{E_{11}}{E_m} = 1 + \frac{(k_f/k_m - 1)G_1 + 2(\mu_f/\mu_m - 1)K_1}{2K_1G_3 + G_1K_3}\phi$$
(5)

where k is the bulk modulus, μ is the shear modulus,

$$K_i = 1 + (k_f/k_m - 1)(1 - \phi)\alpha_i \quad (i = 1,3)$$

$$G_i = 1 + (\mu_f/\mu_m - 1)(1 - \phi)\beta_i \quad (i = 1,3)$$
(6)

 α_i and β_i are functions of the aspect ratio $\rho = c/a$ and Poisson's ratio ν_m of the matrix (see Appendix). Equation (5) compares well with experiments for reinforced plastics⁷. For spherical fillers ($\rho = 1$), $K_1 = K_3 = K$, $G_1 = G_3 = G$ and equation (5) reduces to the well known Kerner equation⁷. When the aspect ratio $\rho \rightarrow \infty$ equation (5) becomes the limiting upper bound for semicrystalline polymers³. Mead and Porter⁴ measured the tensile modulus of ultraoriented high-density polyethylene: $E_{11} = 50 \times 10^{10}$ dyn cm⁻². Using equation (3) and assuming $\nu_f = 0.25$ and $\nu_m = 0.45$, the calculated shape of crystallites from equation (5) is $\rho = 30$ which is very close to the measured aspect ratio (l/d=20-25). This suggests the potential use of equation (5) in the structure-property estimation of a semicrystalline polymer.

Stress concentration

The ratio of the maximum stress to the applied stress defines the stress concentration factor. Consider aligned prolate spheroids (see equation (4) with c > a) in a matrix of lower modulus under a uniform tensile stress parallel to the x_3 axis. The maximum stress occurs at $(x_1, x_2, x_3) = (0,0,c)$ where cohesive and/or adhesive failure takes place. Therefore, the determination of stress concentration factor is essential for heterogeneous materials.

Traditionally, the stress concentration calculation has been limited to a single isolated inclusion¹¹⁻¹³ which does

not include the concentration dependence. The analysis, to include the filler-filler interaction, follows exactly the mean field theory developed for elastic moduli⁷ (see equation (5)) and thermal expansion¹⁴.

The spheroids are assumed to be firmly bonded to the matrix and the composite as a whole is macroscopically homogeneous. The volume average of internal stresses, $\langle \sigma_{pq} \rangle$, inside prolate spheroids due to uniform applied stress σ_{ij}^A can be determined from⁷

$$(1 - \phi)[(\lambda_f - \lambda_m)S_{kkpq}\delta_{ij} + 2(\mu_f - \mu_m)S_{ijpq}]\langle\sigma_{pq}\rangle + \lambda_m\langle\sigma\rangle\delta_{ij} + 2\mu_m\langle\sigma_{ij}\rangle = \lambda_f\sigma^A\delta_{ij} + 2\mu_f\sigma^A_{ij}$$
(7)

where $\lambda = k - 2\mu/3$ is the Lame constant, δ_{ij} is the Kronecker delta, S_{ijpq} is Eshelby's tensor^{7,15} and *e* is the dilatation. There are five independent equations with $\langle a_{22} \rangle = \langle a_{12} \rangle$

There are five independent equations with $\langle \sigma_{23} \rangle = \langle \sigma_{13} \rangle$. Consider a uniform tensile stress σ_{33}^A as the only nontrivial stress applied to the system. The stress concentration factor is

$$S = \frac{\langle \sigma_{33} \rangle}{\sigma_{33}^A} = \frac{(k_f/k_m)G_1 + 2(\mu_f/\mu_m)K_1}{2K_1G_3 + G_1K_3}$$
(8)

where K_i and G_i (i = 1,3) are given in equation (6). The above equation contains both shape and concentration effects of fillers. When $\phi \rightarrow 0$ and $\rho = 1$, equation (8) becomes

$$S = \left[\frac{k_f}{k_m} + 2(\mu_f/\mu_m)/G \right]/3$$
(9)

which is the classical Goodier Equation¹¹. For illustration, consider glass-filled poly(phenylene oxide) (PPO) possessing the following properties:

$$E_f = 73.1 \times 10^{10} \text{ dyn cm}^{-2}, \ \mu_f = 0.22$$

 $E_m = 2.6 \times 10^{10} \text{ dyn cm}^{-2}, \ \mu_m = 0.35$
(10)

The stress concentration factor is calculated from equation (8) as a function of ρ and ϕ . The general behaviour is shown in *Figure 1*. It reveals that the concentration dependence diminishes for large values of the aspect ratio.

Figure 1 Effects of ρ and ϕ on the stress concentration factor. A, $\phi \rightarrow 0$; B, $\phi = 0.4$

Polymer reports

References

- 1 Manson, J. A. and Sperling, L. H. 'Polymer Blends and Composites', Plenum Press, N.Y., 1976, Ch. 12
- 2 Ashton, J. E., Halpin, J. C. and Petit, P. H. 'Primer on Composite Materials: Analysis', Technomic, Stamford, Conn., 1969, p 77
- Halpin, J. C. and Kardos, J. L. J. Appl. Phys. 1972, 43, 2235 Mead, W. T. and Porter, R. S. J. Appl. Phys. 1976, 47, 4278 3
- 4
- 5 Porter, R. S., Southern, J. H. and Weeks, N. Polym. Eng. Sci. 1975, 15, 213
- 6
- Chow, T. S. J. Appl. Phys. 1977, 48, 4072 Chow, T. S. J. Polym. Sci. (Polym. Phys. Edn.) 1978, 16, 959 7
- 8 Takayanagi, M., Harima, H. and Iwata, Y. Rep. Prog. Polym. Phys. Jpn 1963, 6, 121
- 9 Crystal, R. C. and Southern, J. H. J. Polym. Sci. A2, 1971, 9, 1641
- 10 Hermans, J. J. Proc. R. Acad. Amsterdam 1967, B70, 1
- Goodier, J. N. J. Appl. Mech. 1933, 1, 39 11
- Edwards, R. H. J. Appl. Mech. 1951, 18, 19 12
- 13 Argon, A. S. Fibre Sci. Technol. 1976, 9, 265
- Chow, T. S. J. Polym. Sci. (Polym. Phys. Edn.) 1978, 16, 967 14
- 15 Eshelby, J. D. Proc. R. Soc. London Ser. A. 1957, 241, 376

Appendix

The parameters for equation (6) are listed in the following:

$$\alpha_1 = 4\pi Q/3 - 2(2\pi - I)R$$

$$\alpha_3 = 4\pi Q/3 + 4(I - \pi)R$$

$$\beta_1 = \left(4\pi/3 - \frac{4\pi - 3I}{1 - \rho^2}\right)Q - 4(I - 2\pi)R$$

$$\beta_3 = \left[4\pi/3 - (4\pi - 3I)\rho^2/(1 - \rho^2)\right]Q + (4\pi - I)R$$

where

$$Q = \frac{3}{8\pi} \frac{1}{1 - \nu_m}, R = \frac{1}{8\pi} \frac{1 - 2\nu_m}{1 - \nu_m}$$

and

$$r = \begin{cases} \frac{2\pi\rho}{(1-\rho^2)^{3/2}} \left[\cos^{-1}\rho - \rho(1-\rho^2)^{1/2}\right] & \text{for } \rho < 1, \\ \frac{2\pi\rho}{(\rho^2 - 1)^{3/2}} \left[\rho(\rho^2 - 1)^{1/2} - \cosh^{-1}\rho\right] & \text{for } \rho > 1 \end{cases}$$

When $\rho \rightarrow 1$, we have

$$\alpha_1 = \alpha_3 = \alpha = \frac{1}{3} \left(\frac{1 + \nu_m}{1 - \nu_m} \right)$$
$$\beta_1 = \beta_3 = \beta = \frac{2}{15} \left(\frac{4 - 5\nu_m}{1 - \nu_m} \right)$$

ERRATUM

'Proton spin-lattice relaxation in vinyl polymers and an application of a solvable model of polymer dynamics'

F. Heatley* and J. T. Bendler[†]

There is an error in the definition of the relaxation coefficients in equation (3) of reference 1, concerned with coupled proton spin-lattice relaxation in vinyl polymers. The equation defining the cross-relaxation coefficients T_{AX} and T_{XA} is in error by a factor of 2, and should read

$$\frac{1}{T_{AX}} = \frac{1}{2T_{XA}} = K \quad \frac{12J(\omega_A + \omega_X) - 2J(\omega_A - \omega_X)}{R_{AX}^6}$$

This error is solely a transcription error. Relaxation parameters reported in reference 1 were evaluated using the correct form.

Unfortunately, the incorrect expression was employed in a subsequent application of a jump model of polymer motion². As a consequence of the correction above, calculated nuclear Overhauser enhancements given in Table III of reference 2 should be multiplied by 2. The agreement with experiment is much improved. (Note also that the entry for the parameter N_A at 10°C in the fourteenth column of *Table III* has been incorrectly printed as -0.9 instead of -0.09.)

References

- 1. Heatley, F. and Cox, M. K. Polymer 1977, 18, 225
- Bendler, J. T. and Yaris, R. Macromolecules 1978, 11, 650 2

Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK

t General Electric, R and D Center, Schenectady, N. Y. 12301, USA